Machine learning: A contribution to operational research

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

5 Citas (Scopus)

Resumen

In this work, we integrate computational techniques based on machine learning (ML) and computational intelligence (CI) to conventional methodologies used in the Operational Research (OR) degree course for Engineers. That synergy between those techniques and methods allows students to deal with decision-making complex problems. The primary goals of this research work are to present potential interactions between the two computational fields and show some examples of them. This is a contribution to engineering education research where we present how ML techniques, such as neural networks, fuzzy logic, and reinforcement learning are integrated through applications in an OR course, being able to increase the approach of more complex problems in a simpler way compared to traditional OR methods. The current paper is a different proposal for OR courses that uses the symbiosis between mathematical models employing computer simulations, CI and different hybrid models.
Idioma originalInglés
Número de artículo9064835
Páginas (desde-hasta)70-75
Número de páginas6
PublicaciónRevista Iberoamericana de Tecnologias del Aprendizaje
Volumen15
N.º2
DOI
EstadoPublicada - 1 may. 2020

Nota bibliográfica

Publisher Copyright:
© 2013 IEEE.

Palabras clave

  • Hybrid models
  • Machine learning
  • Operational research
  • Optimization

Huella

Profundice en los temas de investigación de 'Machine learning: A contribution to operational research'. En conjunto forman una huella única.

Citar esto