Integration formulas via the Fenchel subdifferential of nonconvex functions

Rafael Correa, Yboon García, Abderrahim Hantoute

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

15 Citas (Scopus)

Resumen

Starting from explicit expressions for the subdifferential of the conjugate function, we establish in the Banach space setting some integration results for the so-called epi-pointed functions. These results use the ε- subdifferential and the Fenchel subdifferential of an appropriate weak lower semicontinuous (lsc) envelope of the initial function. We apply these integration results to the construction of the lsc convex envelope either in terms of the ε-subdifferential of the nominal function or of the subdifferential of its weak lsc envelope.
Idioma originalInglés
Páginas (desde-hasta)1188-1201
Número de páginas14
PublicaciónNonlinear Analysis, Theory, Methods and Applications
Volumen75
N.º3
DOI
EstadoPublicada - 1 feb. 2012

Palabras clave

  • Conjugate function
  • Epi-pointed functions
  • Integration
  • Lower semicontinuous convex envelope
  • ε-subdifferential

Huella

Profundice en los temas de investigación de 'Integration formulas via the Fenchel subdifferential of nonconvex functions'. En conjunto forman una huella única.

Citar esto