Resumen
Nowadays, the mass media surround us in many forms. Newspapers, radio and TV reports about many topics, including the crime committed in a region. Indirectly, the media provide statistics about crime incidents, and policymakers could focus their attention on the unusual number of crime news (c.f., regular events) for evaluating and proposing new public policies. In the present work, the Tensor decomposition is used to detect an unusual amount of crime news. To achieve this goal, two rejection criterion techniques were compared. Also, several image binarization techniques were used to validate our proposal. Our result can be used to detect an unusual amount of crime news as a proxy of unusual crime activity.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Information management and big data |
Subtítulo de la publicación alojada | 6th International Conference, SIMBig 2019, Proceedings |
Editores | Juan Antonio Lossio-Ventura, Nelly Condori-Fernandez, Jorge Carlos Valverde-Rebaza |
Lugar de publicación | Cham |
Páginas | 35-45 |
Número de páginas | 11 |
ISBN (versión digital) | 978-3-030-46140-9 |
DOI | |
Estado | Publicada - 23 abr. 2020 |
Evento | Communications in Computer and Information Science - Duración: 1 ene. 2020 → … |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 1070 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia
Conferencia | Communications in Computer and Information Science |
---|---|
Período | 1/01/20 → … |
Nota bibliográfica
Publisher Copyright:© Springer Nature Switzerland AG 2020.
Palabras clave
- Crime
- Event detection
- Tensor decomposition