De-anonymization attack on geolocated data

Sébastien Gambs, Marc Olivier Killijian, Miguel Núñez Del Prado Cortez

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

129 Citas (Scopus)

Resumen

With the advent of GPS-equipped devices, a massive amount of location data is being collected, raising the issue of the privacy risks incurred by the individuals whose movements are recorded. In this work, we focus on a specific inference attack called the de-anonymization attack, by which an adversary tries to infer the identity of a particular individual behind a set of mobility traces. More specifically, we propose an implementation of this attack based on a mobility model called Mobility Markov Chain (MMC). An MMC is built out from the mobility traces observed during the training phase and is used to perform the attack during the testing phase. We design several distance metrics quantifying the closeness between two MMCs and combine these distances to build de-anonymizers that can re-identify users. Experiments conducted on real datasets demonstrate that the attack is both accurate and resilient to sanitization mechanisms.
Idioma originalInglés
Páginas (desde-hasta)1597-1614
Número de páginas18
PublicaciónJournal of Computer and System Sciences
Volumen80
N.º8
DOI
EstadoPublicada - dic. 2014
Publicado de forma externa

Palabras clave

  • De-anonymization
  • Geolocation
  • Inference attack
  • Privacy

Huella

Profundice en los temas de investigación de 'De-anonymization attack on geolocated data'. En conjunto forman una huella única.

Citar esto