Resumen
Neste artigo é apresentada uma nova abordagem de um modelo inteligente de otimização sob incerteza para determinar a contratação de energia elétrica no curto prazo (referente aos leilões A-1 e Ajuste) para distribuidoras de energia elétrica.
Nesse modelo estão incluídas todas as regras de contratação e repasse à tarifa, definidas pela ANEEL, para as distribuidoras. O processo de otimização utiliza um algoritmo genético, e busca minimizar o custo associado à contratação de energia elétrica, as penalidades por subcontratação e o custo da liquidação (compra/venda) desta energia ao PLD (Preço de Liquidação das Diferenças).
A contratação ótima é calculada considerando vários cenários de consumo, obtidos a partir de simulação Monte Carlo, para um período de cinco anos de análise. As decisões de contratação do modelo são tomadas nos dois primeiros anos desse período.
A avaliação dos resultados do sistema é feita considerando uma combinação entre o Valor Esperado (VE) da distribuição de custos e o CVaR (Conditional Value at Risk), para os diferentes cenários de consumo. O modelo também usa o PLD_robusto, que busca minimizar a exposição da distribuidora ao PLD.
Para ilustrar os resultados do modelo proposto é apresentado um estudo de caso baseado em dados reais. Os resultados obtidos são comparados com alguns resultados de contratação que não consideram o modelo de otimização proposto. Essa comparação é feita para se verificar o quanto o método proposto pode ser melhor que soluções baseadas apenas em análises intuitivas. Além disso, estudos adicionais são apresentados considerando os mecanismos de compensação de sobras e déficits, notadamente MCSD4% e MCSD_Ex-post, previstos na legislação vigente do setor elétrico para minimizar os riscos associados à contratação de energia para as distribuidoras.
Nesse modelo estão incluídas todas as regras de contratação e repasse à tarifa, definidas pela ANEEL, para as distribuidoras. O processo de otimização utiliza um algoritmo genético, e busca minimizar o custo associado à contratação de energia elétrica, as penalidades por subcontratação e o custo da liquidação (compra/venda) desta energia ao PLD (Preço de Liquidação das Diferenças).
A contratação ótima é calculada considerando vários cenários de consumo, obtidos a partir de simulação Monte Carlo, para um período de cinco anos de análise. As decisões de contratação do modelo são tomadas nos dois primeiros anos desse período.
A avaliação dos resultados do sistema é feita considerando uma combinação entre o Valor Esperado (VE) da distribuição de custos e o CVaR (Conditional Value at Risk), para os diferentes cenários de consumo. O modelo também usa o PLD_robusto, que busca minimizar a exposição da distribuidora ao PLD.
Para ilustrar os resultados do modelo proposto é apresentado um estudo de caso baseado em dados reais. Os resultados obtidos são comparados com alguns resultados de contratação que não consideram o modelo de otimização proposto. Essa comparação é feita para se verificar o quanto o método proposto pode ser melhor que soluções baseadas apenas em análises intuitivas. Além disso, estudos adicionais são apresentados considerando os mecanismos de compensação de sobras e déficits, notadamente MCSD4% e MCSD_Ex-post, previstos na legislação vigente do setor elétrico para minimizar os riscos associados à contratação de energia para as distribuidoras.
Título traducido de la contribución | Analysis of an inteligent model to electricity trading in the short term for distribution company |
---|---|
Idioma original | Portugués |
Páginas (desde-hasta) | 711-725 |
Número de páginas | 15 |
Publicación | Sba: Controle & Automação Sociedade Brasileira de Automatica |
DOI | |
Estado | Publicada - 2012 |
Publicado de forma externa | Sí |
Palabras clave
- Electricity trading
- Optimization Model
- Rules of the electrical system to the distribution companies
- Tariff of Energy