Publicaciones por año
Publicaciones por año
Victor H. Ayma, Patrick N. Happ, Raul Q. Feitosa, Gilson A.O.P. Costa, Bruno Feijó
Producción científica: Capítulo del libro/informe/acta de congreso › Contribución a la conferencia › revisión exhaustiva
Visual object tracking aims to deliver accurate estimates about the state of the target in a sequence of images or video frames. Nevertheless, tracking algorithms are sensitive to different kinds of image perturbations that frequently cause tracking failures. Indeed, tracking failures result from the insertion of imprecise target-related data into the trackers’ appearance models, which leads the trackers to lose the target or drift away from it. Here, we propose a tracking fusion approach, which incorporates feedback and re-initialization mechanisms to improve overall tracking performance. Our fusion technique, called SymTE-TR, enhances trackers’ overall performance by updating their appearances models with reliable information of the target’s states, while resets the imprecise trackers. We evaluated our approach on a facial video dataset, which characterizes a particular challenging tracking application under different imaging conditions. The experimental results indicate that our approach contributes to enhancing individual tracker performances by providing stable results across the video sequences and, consequently, contributes to stable overall tracking fusion performances.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Information Management and Big Data - 7th Annual International Conference, SIMBig 2020, Proceedings |
Editores | Juan Antonio Lossio-Ventura, Jorge Carlos Valverde-Rebaza, Eduardo Díaz, Hugo Alatrista-Salas |
Editorial | Springer Science and Business Media Deutschland GmbH |
Páginas | 250-263 |
Número de páginas | 14 |
ISBN (versión impresa) | 978-3-030-76227-8 |
DOI | |
Estado | Publicada - 2021 |
Publicado de forma externa | Sí |
Evento | 7th Annual International Conference on Information Management and Big Data, SIMBig 2020 - Virtual, Online Duración: 1 oct. 2020 → 3 oct. 2020 |
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 1410 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia | 7th Annual International Conference on Information Management and Big Data, SIMBig 2020 |
---|---|
Ciudad | Virtual, Online |
Período | 1/10/20 → 3/10/20 |
Producción científica: Informe/libro › Libro › revisión exhaustiva