Spatio-sequential patterns mining: Beyond the boundaries

Hugo Alatrista-Salas, Sandra Bringay, Frédéric Flouvat, Nazha Selmaoui-Folcher, Maguelonne Teisseire

Resultado de la investigación: Contribución a una revistaArtículo de revista revisión exhaustiva

5 Citas (Scopus)

Resumen

All rights reserved. Data mining methods extract knowledge from huge amounts of data. Recently with the explosion of mobile technologies, a new type of data appeared. The resulting databases can be described as spatiotemporal data in which spatial information (e.g., the location of an event) and temporal information (e.g., the date of the event) are included. In this article, we focus on spatiotemporal patterns extraction from this kind of databases. These patterns can be considered as sequences representing changes of events localized in areas and its near surrounding over time. Two algorithms are proposed to tackle this problem: the first one uses \emph{a priori} strategy and the second one is based on pattern-growth approach. We have applied our generic method on two different real datasets related to: 1) pollution of rivers in France; and 2) monitoring of dengue epidemics in New Caledonia. Additionally, experiments on synthetic data have been conducted to measure the performance of the proposed algorithms.
Idioma originalInglés
Páginas (desde-hasta)293-316
Número de páginas24
PublicaciónIntelligent Data Analysis
Volumen20
N.º2
DOI
EstadoPublicada - 1 mar. 2016
Publicado de forma externa

Palabras clave

  • Health risk management
  • Sequential patterns
  • Spatiotemporal data mining

Huella

Profundice en los temas de investigación de 'Spatio-sequential patterns mining: Beyond the boundaries'. En conjunto forman una huella única.

Citar esto