Some remarks on the class of continuous (semi-)∈strictly quasiconvex functions

A. Daniilidis, Y. Garcia Ramos

Resultado de la investigación: Contribución a una revistaArtículo de revista revisión exhaustiva

12 Citas (Scopus)

Resumen

We introduce the notion of variational (semi-)∈strict quasimonotonicity for a multivalued operator T ∈: X * relative to a nonempty subset A of X which is not necessarily included in the domain of T. We use this notion to characterize the subdifferentials of continuous (semi-)∈strictly quasiconvex functions. The proposed definition is a relaxation of the standard definition of (semi-)∈strict quasimonotonicity, the latter being appropriate only for operators with nonempty values. Thus, the derived results are extensions to the continuous case of the corresponding results for locally Lipschitz functions.
Idioma originalInglés
Páginas (desde-hasta)37-48
Número de páginas12
PublicaciónJournal of Optimization Theory and Applications
Volumen133
N.º1
DOI
EstadoPublicada - 1 abr. 2007
Publicado de forma externa

Palabras clave

  • Quasiconvex functions
  • Quasimonotone operators
  • Utility functions
  • Variational analysis

Huella

Profundice en los temas de investigación de 'Some remarks on the class of continuous (semi-)∈strictly quasiconvex functions'. En conjunto forman una huella única.

Citar esto