Single-directional property of multivalued maps and variational systems

D. Aussel, Y. Garcia, N. Hadjisavvas

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

12 Citas (Scopus)

Resumen

Dontchev and Hager [Math. Oper. Res., 19 (1994), pp. 753-768] have shown that a monotone set-valued map defined from a Banach space to its dual which satisfies the Aubin property around a point (x, y) of its graph is actually single-valued in a neighborhood of x. We prove a result which is the counterpart of the above for quasi-monotone set-valued maps, based on the concept of single-directional property. As applications, we provide sufficient conditions for this single-valued property to hold for the solution map of general variational systems and quasi-variational inequalities. We also investigate the single-directionality property for the normal operator to the sublevel sets of a quasi-convex function.
Idioma originalInglés
Páginas (desde-hasta)1274-1285
Número de páginas12
PublicaciónSIAM Journal on Optimization
Volumen20
N.º3
DOI
EstadoPublicada - 1 dic. 2009
Publicado de forma externa

Palabras clave

  • Aubin property
  • Lipschitz-like property
  • Metric regularity
  • Normal operator
  • Parametric variational systems
  • Quasi-monotone map
  • Single-directional property

Huella

Profundice en los temas de investigación de 'Single-directional property of multivalued maps and variational systems'. En conjunto forman una huella única.

Citar esto