Resumen
Civil unrest is public manifestations, where people demonstrate their position for different causes. Sometimes, violent events or riots are unleashed in this kind of events, and these can be revealed from tweets posted by involved people. This study describes a methodology to detect riots within the time of a protest to identify potential adverse developments from tweets. Using two own datasets related to a violent and non-violent protest in Peru, we applied temporal clustering to obtain events and identify a tweet headline per cluster. We then extracted relevant terms for the scoring and ranking process using a different domain and contrast corpus built from different sources. Finally, we filtered the relevant events for the violence domain by using a contrast evaluation between the two datasets. The obtained results highlight the adequacy of the proposed approach.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | ADBIS, TPDL and EDA 2020 Common Workshops and Doctoral Consortium - International Workshops |
Subtítulo de la publicación alojada | DOING, MADEISD, SKG, BBIGAP, SIMPDA, AIMinScience 2020 and Doctoral Consortium, Proceedings |
Editores | Ladjel Bellatreche, Mária Bieliková, Omar Boussaïd, Jérôme Darmont, Barbara Catania, Elena Demidova, Fabien Duchateau, Mark Hall, Tanja Mercun, Maja Žumer, Boris Novikov, Christos Papatheodorou, Thomas Risse, Oscar Romero, Lucile Sautot, Guilaine Talens, Robert Wrembel |
Páginas | 49-59 |
Número de páginas | 11 |
ISBN (versión digital) | 9783030558130 |
DOI | |
Estado | Publicada - 1 ene. 2020 |
Evento | Communications in Computer and Information Science - Duración: 1 ene. 2020 → … |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 1260 CCIS |
ISSN (versión impresa) | 1865-0929 |
ISSN (versión digital) | 1865-0937 |
Conferencia
Conferencia | Communications in Computer and Information Science |
---|---|
Período | 1/01/20 → … |
Nota bibliográfica
Publisher Copyright:© 2020, Springer Nature Switzerland AG.
Palabras clave
- Clustering
- Event detection
- Riot
- Social media analysis