Proyección del precio de criptomonedas basado en tweets empleando LSTM

Andrés Regal, Juandiego Morzán, Carlos Fabbri, Gonzalo Herrera, Gabriela Yaulli, Andrea Palomino, Claudia Gil

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

3 Citas (Scopus)

Resumen

El modelamiento y predicción de series temporales constituye una tarea ardua y esencial para los procedimientos de optimización financiera. Numerosos estudios han sido elaborados con la finalidad de reducir la incertidumbre del inversor, mediante el pronóstico de precio de monedas y acciones. Sin embargo, el surgimiento de un nuevo tipo de monedas con características propias, conocidas como cryptocurrencies, plantea retos adicionales. En este sentido, el paper plantea analizar en qué medida las publicaciones en las redes sociales pueden capturar las expectativas colectivas de los inversores, y afectar el valor futuro de la moneda. Nuestro objetivo es pronosticar el desempeño diario de un mercado en base a dos componentes: aquellos que definen el comportamiento de la criptomoneda en sí (volumen, valor de apertura, valor de cierre, valor máximo y valor mínimo) y las expectativas e interacciones del entorno, obtenidas de los tweets recolectados. Para ello, proponemos el uso de un tipo de red neuronal recurrente, conocida como "Long Short Term Memory" (LSTM). La metodología empleada para el preprocesamiento de los datos y la aplicación de esta técnica de pronóstico de series temporales nos permite obtener una predicción con un Error Porcentual Absoluto Medio de 34.92%; lo que indica que la representación de la variable de percepción en redes social no ha sido la pertinente y, por lo tanto, motiva nuevos trabajos con la finalidad de modelar esta variable mediante el uso de otras técnicas de NLP.
Título traducido de la contribuciónCryptocurrency price projection based on Tweets using LSTM
Idioma originalEspañol
Páginas (desde-hasta)696-706
Número de páginas11
PublicaciónIngeniare
Volumen27
N.º4
DOI
EstadoPublicada - dic. 2019
Publicado de forma externa

Nota bibliográfica

Publisher Copyright:
© 2019, Universidad de Tarapaca. All rights reserved.

Palabras clave

  • Cryptocurrencies
  • LSTM
  • Twitter

Huella

Profundice en los temas de investigación de 'Proyección del precio de criptomonedas basado en tweets empleando LSTM'. En conjunto forman una huella única.

Citar esto