Prediction of solar radiation using neural networks forecasting

Álvaro Talavera, Marcos Ponce-Jara, Carlos Velásquez, David Tonato Peralta

Resultado de la investigación: Contribución a una revistaArtículo de revista revisión exhaustiva

Resumen

Solar radiation and wind data play an important role in renewable energy projects to produce electricity. In Ecuador, these data are not always available for locations of interest due to absences of meteorological stations. In the scope of this paper, a low-cost automatic meteorological station prototype based on Raspberry technology was developed to measure the aforementioned variables. The objective of this paper is twofold: a) to present a proposal for the design of a low-cost automatic weather station using the Raspberry Pi microcomputer, showing the feasibility of this technology as an alternative for the construction of automatic meteorological station and; b) to use Forecasting with neural networks to predict solar radiation in Manta, Ecuador, based on the historical data collected: solar radiation, wind speed and wind direction. We proved that both technology feasibility and Machine learning has a high potential as a tool to use in this field of study.
Idioma originalInglés
Páginas (desde-hasta)181-194
Número de páginas14
PublicaciónCommunications in Computer and Information Science
Volumen1410
DOI
EstadoPublicada - 12 may. 2021
EventoInternational Conference on Information Management and Big Data - Lima, Perú
Duración: 1 oct. 20203 oct. 2020
Número de conferencia: 7
https://simbig.org/SIMBig2020/

Nota bibliográfica

Contribución a la conferencia.

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Huella

Profundice en los temas de investigación de 'Prediction of solar radiation using neural networks forecasting'. En conjunto forman una huella única.

Citar esto