On maximality of quasimonotone operators

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

5 Citas (Scopus)

Resumen

We introduce the notion of quasimonotone polar of a multivalued operator, in a similar way as the well-known monotone polar due to Martínez-Legaz and Svaiter. We first recover several properties similar to the monotone polar, including a characterization in terms of normal cones. Next, we use it to analyze certain aspects of maximal (in the sense of graph inclusion) quasimonotonicity, and its relation to the notion of maximal quasimonotonicity introduced by Aussel and Eberhard. Furthermore, we study the connections between quasimonotonicity and Minty Variational Inequality Problems and, in particular, we consider the general minimization problem. We conclude by characterizing the maximal quasimonotonicity of operators defined in the real line.
Idioma originalInglés
Páginas (desde-hasta)87-101
Número de páginas15
PublicaciónSet-Valued and Variational Analysis
Volumen27
N.º1
Fecha en línea anticipada24 may. 2017
DOI
EstadoPublicada - 15 mar. 2019

Nota bibliográfica

Publisher Copyright:
© 2017, Springer Science+Business Media Dordrecht.

Palabras clave

  • Adjusted normal cones
  • Maximal quasimonotone operators
  • Minimization problem
  • Minty variational inequality
  • Quasimonotone operators
  • Quasimonotone polarity

Huella

Profundice en los temas de investigación de 'On maximality of quasimonotone operators'. En conjunto forman una huella única.

Citar esto