Maximum likelihood estimation of dynamic panel threshold models

N. R. Ramírez-Rondán

Resultado de la investigación: Contribución a una revistaArtículo de revista revisión exhaustiva

2 Citas (Scopus)

Resumen

Threshold estimation methods are developed for dynamic panels with individual specific fixed effects covering short time periods. Maximum likelihood estimation of the threshold and slope parameters is proposed using first difference transformations. Threshold estimate is shown to be consistent and its asymptotic distribution is nonstandard when the number of individuals grows to infinity for a fixed time period; the slope estimates are consistent and asymptotically normally distributed. The method is applied to a sample of 74 countries and 11 periods of 5-year averages to determine the effect of inflation rate on long-run economic growth.

Idioma originalInglés
Páginas (desde-hasta)260-276
Número de páginas17
PublicaciónEconometric Reviews
Volumen39
N.º3
DOI
EstadoPublicada - 15 mar. 2020
Publicado de forma externa

Nota bibliográfica

Funding Information:
I am indebted to Bruce Hansen for his guidance, discussions, and suggestions in this project. I also would like to thank Jack Porter, Andr?s Aradillas-L?pez, Xiaoxia Shi, Chunming Zhang, Arthur Lewbel, Antonio Galvao, David Jacho-Ch?vez, Esfandiar Maasoumi, and the two anonymous referees as well as the participants of the 2014 Annual Meeting of the Latin American Econometric Society (Sao Paulo, Brazil), 2012 Meeting of the Midwest Econometric Group (Lexington, KY), Central Bank of Peru Research Seminar and the University of Wisconsin-Madison Econometrics Workshop, Lunch Seminar and Reading Group for their discussions and useful comments. Special thanks to Patricia Paskov for proofreading the paper. All remaining errors are mine.

Publisher Copyright:
© 2019, © 2019 Taylor & Francis Group, LLC.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Huella

Profundice en los temas de investigación de 'Maximum likelihood estimation of dynamic panel threshold models'. En conjunto forman una huella única.

Citar esto