MapReducing GEPETO or towards conducting a privacy analysis on millions of mobility traces

Sebastien Gambs, Marc Olivier Killijian, Izabela Moise, Miguel Nunez Del Prado Cortez

Producción científica: Contribución a una conferencia

2 Citas (Scopus)

Resumen

GEPETO (for GEoPrivacy-Enhancing Toolkit) is a flexible software that can be used to visualize, sanitize, perform inference attacks and measure the utility of a particular geolocated dataset. The main objective of GEPETO is to enable a data curator (e.g., a company, a governmental agency or a data protection authority) to design, tune, experiment and evaluate various sanitization algorithms and inference attacks as well as visualizing the following results and evaluating the resulting trade-off between privacy and utility. In this paper, we propose to adopt the MapReduce paradigm in order to be able to perform a privacy analysis on large scale geolocated datasets composed of millions of mobility traces. More precisely, we design and implement a complete MapReduce-based approach to GEPETO. Most of the algorithms used to conduct an inference attack (such as sampling, kMeans and DJ-Cluster) represent good candidates to be abstracted in the MapReduce formalism. These algorithms have been implemented with Hadoop and evaluated on a real dataset. Preliminary results show that the MapReduced versions of the algorithms can efficiently handle millions of mobility traces.
Idioma originalInglés
Páginas1937-1946
Número de páginas10
DOI
EstadoPublicada - 1 ene. 2013
Publicado de forma externa
EventoProceedings - IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW 2013 -
Duración: 1 ene. 2013 → …

Conferencia

ConferenciaProceedings - IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW 2013
Período1/01/13 → …

Palabras clave

  • Big Data Mining
  • Data-Intensive Applications
  • Hadoop
  • Location Privacy
  • MapReduce

Huella

Profundice en los temas de investigación de 'MapReducing GEPETO or towards conducting a privacy analysis on millions of mobility traces'. En conjunto forman una huella única.

Citar esto