MapReducing GEPETO or towards conducting a privacy analysis on millions of mobility traces

Sebastien Gambs, Marc Olivier Killijian, Izabela Moise, Miguel Nunez Del Prado Cortez

Producción científica: Capítulo del libro/informe/acta de congresoCapítulo de librorevisión exhaustiva

3 Citas (Scopus)

Resumen

GEPETO (for GEoPrivacy-Enhancing Toolkit) is a flexible software that can be used to visualize, sanitize, perform inference attacks and measure the utility of a particular geolocated dataset. The main objective of GEPETO is to enable a data curator (e.g., a company, a governmental agency or a data protection authority) to design, tune, experiment and evaluate various sanitization algorithms and inference attacks as well as visualizing the following results and evaluating the resulting trade-off between privacy and utility. In this paper, we propose to adopt the MapReduce paradigm in order to be able to perform a privacy analysis on large scale geolocated datasets composed of millions of mobility traces. More precisely, we design and implement a complete MapReduce-based approach to GEPETO. Most of the algorithms used to conduct an inference attack (such as sampling, kMeans and DJ-Cluster) represent good candidates to be abstracted in the MapReduce formalism. These algorithms have been implemented with Hadoop and evaluated on a real dataset. Preliminary results show that the MapReduced versions of the algorithms can efficiently handle millions of mobility traces.
Idioma originalInglés
Título de la publicación alojada2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum
EditorialInstitute of Electrical and Electronics Engineers Inc.
Páginas1937-1946
Número de páginas10
ISBN (versión digital)978-0-7695-4979-8
DOI
EstadoPublicada - 1 ene. 2013
Publicado de forma externa
EventoProceedings - IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW 2013 -
Duración: 1 ene. 2013 → …

Conferencia

ConferenciaProceedings - IEEE 27th International Parallel and Distributed Processing Symposium Workshops and PhD Forum, IPDPSW 2013
Período1/01/13 → …

Palabras clave

  • Big Data Mining
  • Data-Intensive Applications
  • Hadoop
  • Location Privacy
  • MapReduce

Huella

Profundice en los temas de investigación de 'MapReducing GEPETO or towards conducting a privacy analysis on millions of mobility traces'. En conjunto forman una huella única.

Citar esto