Resumen
In a previous paper, the authors showed that in a reflexive Banach space the lower limit of a sequence of maximal monotone operators is always representable by a convex function. The present paper gives precisions to the latter result by demonstrating the continuity of the representation with respect to the epi-convergence of the representative functions, and the stability of the class of maximal monotone operators with respect to the Mosco-convergence of their representative functions.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 795-803 |
Número de páginas | 9 |
Publicación | Optimization Letters |
Volumen | 13 |
N.º | 4 |
DOI | |
Estado | Publicada - 1 jun. 2019 |
Palabras clave
- Convex function
- Epi-convergence
- Maximal monotone operator
- Mosco-convergence
- Representative function
- Subdifferential