Resumen
We prove that the notions of (Formula presented.) -cyclic quasimonotonicity and (Formula presented.) -cyclic monotonicity are equivalent for affine maps defined on Banach spaces. First this is done in a finite dimensional space by using the index of asymmetry for matrices defined by J.-P. Crouzeix and C. Gutan. Then this equivalence is extended to general Banach spaces.
Idioma original | Inglés |
---|---|
Páginas (desde-hasta) | 1487-1497 |
Número de páginas | 11 |
Publicación | Optimization |
Volumen | 64 |
N.º | 7 |
DOI | |
Estado | Publicada - 1 ene. 2015 |
Palabras clave
- affine multivalued maps
- cyclic monotonicity
- cyclic quasimonotonicity
- index of asymmetry
- monotonicity<sup>+</sup>
- paramonotonicity
- positive semidefinite matrices