Dynamic and recursive oil-reservoir proxy using Elman neural networks

Yvan Tupac, Alvaro Talavera, Cristian Rodriguez Rivero

Producción científica: Contribución a una conferencia

1 Cita (Scopus)

Resumen

In this work, a reservoir simulation approximation model (proxy) based on recurrent artificial neural networks is proposed. This model is intended to obtain rates of oil, gas and water production at time t+1 from the respective production rates, average pressure and water cut at t time and the well operation points to be applied in t + 1. Also, this model is able to follow the dynamics of the reservoir system applying online learning from real production observed values. Also, this model allows perform fast and accurate production forecasting for several steps using a recursive mechanism. This model will be inserted into an oil-production control tool to find the optimal operation conditions within a forecast horizon. The obtained outcomes over the approximation tests indicate the methodology is adequate to perform production forecasts.
Idioma originalInglés
DOI
EstadoPublicada - 27 ene. 2017
EventoProceedings of the 2016 IEEE ANDESCON, ANDESCON 2016 -
Duración: 27 ene. 2017 → …

Conferencia

ConferenciaProceedings of the 2016 IEEE ANDESCON, ANDESCON 2016
Período27/01/17 → …

Palabras clave

  • Proxy
  • Recurrent Networks
  • Reservoir Simulation

Huella

Profundice en los temas de investigación de 'Dynamic and recursive oil-reservoir proxy using Elman neural networks'. En conjunto forman una huella única.

Citar esto