Resumen
As decisões econômicas de investimento, assim como as avaliações econômicas de projetos, são afetadas por incertezas econômicas, incertezas técnicas e por flexibilidades gerenciais embutidas em projetos. Flexibilidades gerenciais dão liberdade ao gerente para tomar decisões, tais como investir, expandir, parar temporariamente ou abandonar um determinado projeto. Tais flexibilidades possuem valor e só a teoria de opções reais consegue avaliá-las. As opções reais permitem considerar, além das incertezas, a flexibilidade gerencial, tendo por objetivo maximizar o valor da oportunidade de investimento. Para se determinar o valor de uma opção real, normalmente são utilizados modelos de árvores binomiais, diferenças finitas ou técnicas de simulação Monte Carlo. Entretanto, os métodos tradicionais de árvores binomiais e diferenças finitas são impraticáveis na avaliação de opções com mais de três fatores de incerteza, enquanto que a simulação Monte Carlo tem um custo computacional muito elevado devido ao processo iterativo da simulação estocástica na amostragem de cada variável. O objetivo deste trabalho é pesquisar uma metodologia computacionalmente viável para determinar o valor de opções reais sob diversas incertezas técnicas e de mercado. Neste contexto, é feita uma investigação multidisciplinar (lógica fuzzy, computação evolucionária, processos estocásticos e opções reais) em busca de métodos alternativos que possam reduzir o tempo computacional e assim facilitar as tomadas de decisão conseqüentes da simulação. Para isto, é proposta a união de várias técnicas: Números Fuzzy para representar determinados tipos de incertezas das quais se desconhece o processo estocástico que as modela, processos estocásticos para representar as demais incertezas e a simulação Monte Carlo para obter uma boa aproximação do valor da opção real. Além disso, aplicase um algoritmo genético em conjunto com a simulação Monte Carlo para aproximar uma regra de decisão ótima e determinar o valor da opção real no caso de se ter várias opções de investimento em um projeto. A regra ajuda na decisão 7 entre o investimento imediato em uma das opções ou a espera por melhores condições, as quais dependem do estado das incertezas consideradas. O modelo proposto foi avaliado em problemas de opção de expansão e de opção de investimento em informação, aplicados na área de exploração e produção de petróleo, obtendo os mesmos resultados que as técnicas convencionais com uma redução expressiva do custo computacional. A principal contribuição deste trabalho é a concepção de uma nova metodologia para a determinação do valor de opções reais na presença de incertezas técnicas e de mercado, que oferece vantagens em relação aos métodos convencionais. Os resultados obtidos comprovam que o uso de números fuzzy para representar incertezas das quais se desconhece o processo estocástico que as modela, reduz significativamente o tempo computacional. Além disso, a metodologia demonstra que a técnica de algoritmos genéticos é adequada para obter uma regra de decisão ótima, com uma boa aproximação do valor da opção real, quando são consideradas várias opções de investimento.
Idioma original | Portugués |
---|---|
Tipo | Tesis doctoral |
Editor | Pontificia Universidade Catolica do Rio de Janeiro |
Número de páginas | 190 |
Lugar de publicación | Rio de Janeiro, Brasil |
DOI | |
Estado | Publicada - ago. 2004 |
Palabras clave
- Opciones reales
- Números difusos
- Simulación del Monte Carlo
- Algoritmos genéticos
- Proceso estocástico