Resumen
To guarantee national security against terrorist attacks or organized crime, states must implement homeland security solutions based on ubiquitous systems to know in advance the number of suspects involved in an attack. This work proposes a method, which combines popular trajectory similarity metrics to estimate the number of attackers participating in a malicious act through the analysis of the trajectories described by the attacker’s cell phone connection to antennas (i.e. Call Detail Records). Therefore, measuring trajectory similarity in CDRs generates different challenges compared to those similar metrics applied over GPS and video datasets.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Information Management and Big Data - 5th International Conference, SIMBig 2018, Proceedings |
Editores | Hugo Alatrista-Salas, Juan Antonio Lossio-Ventura, Denisse Muñante |
Lugar de publicación | Cham |
Páginas | 160-173 |
Número de páginas | 14 |
ISBN (versión digital) | 9783030116798 |
DOI | |
Estado | Publicada - 1 ene. 2019 |
Evento | Communications in Computer and Information Science - Duración: 1 ene. 2019 → … |
Serie de la publicación
Nombre | Communications in Computer and Information Science |
---|---|
Volumen | 898 |
ISSN (versión impresa) | 1865-0929 |
Conferencia
Conferencia | Communications in Computer and Information Science |
---|---|
Período | 1/01/19 → … |
Nota bibliográfica
Publisher Copyright:© 2019, Springer Nature Switzerland AG.
Palabras clave
- Similarity
- Terrorist
- Trajectory