Resumen
In this paper we detailed a multinomial classification-based methodology that combines different algorithms (SVM and MLP) with document representations (Tf Idf vectorization and Doc2vec embedding) and: (i) can distinguish between crime-related news and not-crime related news and; (ii) allows the assignment of each crime-related news to its corresponding crime type. With a F1-score of 84% achieved by the MLP with Doc2vec approach, it can be concluded that it is possible to answer the question of how the crimes are committed (what types of crime are perpetrated) and, in this way, offer a thermometer to citizens about criminal activity in a given territory, as reported by news articles.
Idioma original | Inglés |
---|---|
Título de la publicación alojada | Advances in information and communication |
Subtítulo de la publicación alojada | Proceedings of the 2019 Future of Information and Communication Conference (FICC) |
Editores | Kohei Arai, Rahul Bhatia |
Lugar de publicación | Springer, Cham |
Editorial | Springer Verlag |
Páginas | 725-741 |
Número de páginas | 17 |
Volumen | 1 |
ISBN (versión digital) | 9783030123888 |
ISBN (versión impresa) | 9783030123871 |
DOI | |
Estado | Publicación electrónica previa a su impresión - 2 feb. 2019 |
Evento | Future of Information and Communication Conference (FICC) 2019 - San Francisco, Estados Unidos Duración: 14 mar. 2019 → 15 mar. 2019 https://saiconference.com/Conferences/FICC2019 |
Serie de la publicación
Nombre | Lecture Notes in Networks and Systems |
---|---|
Volumen | 69 |
Conferencia
Conferencia | Future of Information and Communication Conference (FICC) 2019 |
---|---|
País/Territorio | Estados Unidos |
Ciudad | San Francisco |
Período | 14/03/19 → 15/03/19 |
Dirección de internet |
Nota bibliográfica
Publicado Proceedings de la conferencia: 2020.Publisher Copyright: © Springer Nature Switzerland AG 2020.