Could machine learning improve the prediction of child labor in Peru?

Producción científica: Capítulo del libro/informe/acta de congresoContribución a la conferenciarevisión exhaustiva

2 Citas (Scopus)


Child labor is a relevant problem in developing countries because it may have a negative impact on economic growth. Policy makers and government agencies need information to correctly allocate their scarce resources to deal with this problem. Although there is research attempting to predict the causes of child labor, previous studies have used only linear statistical models. Non-linear models may improve predictive capacity and thus optimize resource allocation. However, the use of these techniques in this field remains unexplored. Using data from Peru, our study compares the predictive capability of the traditional logit model with artificial neural networks. Our results show that neural networks could provide better predictions than the logit model. Findings suggest that geographical indicators, income levels, gender, family composition and educational levels significantly predict child labor. Moreover, the neural network suggests the relevance of each factor which could be useful to prioritize strategies. As a whole, the neural network could help government agencies to tailor their strategies and allocate resources more efficiently.
Idioma originalInglés
Título de la publicación alojadaInformation Management and Big Data
Subtítulo de la publicación alojada4th Annual International Symposium, SIMBig 2017, Lima, Peru, September 4-6, 2017, Revised Selected Papers
EditoresJuan Antonio Lossio-Ventura, Hugo Alatrista-Salas
Lugar de publicaciónCham
Número de páginas16
ISBN (versión digital)9783319905952
EstadoPublicada - 1 ene. 2018
EventoCommunications in Computer and Information Science -
Duración: 1 ene. 2019 → …

Serie de la publicación

NombreCommunications in Computer and Information Science
ISSN (versión impresa)1865-0929


ConferenciaCommunications in Computer and Information Science
Período1/01/19 → …


Profundice en los temas de investigación de 'Could machine learning improve the prediction of child labor in Peru?'. En conjunto forman una huella única.

Citar esto