COPPER - Constraint optimized prefixspan for epidemiological research

Agustin Guevara-Cogorno, Claude Flamand, Hugo Alatrista-Salas

Resultado de la investigación: Contribución a una conferencia

4 Citas (Scopus)


Sequential pattern mining, is a data mining technique used to study the temporal evolution of events describing a complex phenomenon. This technique has a limited application due to the high number of common sequences generated by dense datasets. To tackle this problem, we propose COP, an extension of the PrefixSpan algorithm oriented towards optimizing the relevance of the results obtained in the sequential patterns mining process. Indeed, we use multiple and simultaneous constraints that represent the expertise of researchers in a specific domain. Experiments conducted on datasets associated to dengue epidemic monitoring show an improve in result relevance from an expert's point of view, as well as, a considerable speed gains for mining dense datasets.
Idioma originalInglés
Número de páginas6
EstadoPublicada - 1 ene. 2015
Publicado de forma externa
EventoProcedia Computer Science -
Duración: 1 ene. 2015 → …


ConferenciaProcedia Computer Science
Período1/01/15 → …

Palabras clave

  • Constraints
  • Epidemiological databases
  • Healthcare risk management
  • Sequential patterns mining


Profundice en los temas de investigación de 'COPPER - Constraint optimized prefixspan for epidemiological research'. En conjunto forman una huella única.

Citar esto