A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions

Rocío Maehara, Heleno Bolfarine, Filidor Vilca, N. Balakrishnan

Resultado de la investigación: Contribución a una revistaArtículo de revista revisión exhaustiva

Resumen

Skew-normal/independent distributions provide an attractive class of asymmetric heavy-tailed distributions to the usual symmetric normal distribution. We use this class of distributions here to derive a robust generalization of sinh-normal distributions (Rieck in Statistical analysis for the Birnbaum–Saunders fatigue life distribution, 1989), we then propose robust nonlinear regression models, generalizing the Birnbaum–Saunders regression models proposed by Rieck and Nedelman (Technometrics 33:51–60, 1991) that have been studied extensively. The proposed regression models have a nice hierarchical representation that facilitates easy implementation of an EM algorithm for the maximum likelihood estimation of model parameters and provide a robust alternative to estimation of parameters. Simulation studies as well as applications to a real dataset are presented to illustrate the usefulness of the proposed model as well as all the inferential methods developed here.

Idioma originalInglés
Páginas (desde-hasta)1049-1080
Número de páginas32
PublicaciónMetrika
Volumen84
N.º7
Fecha en línea anticipada13 abr 2021
DOI
EstadoPublicada - oct 2021

Nota bibliográfica

Funding Information:
This study was partially supported by a CNPq (309086/2009-4) and FAPESP grant from Brazil.

Publisher Copyright:
© 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Huella

Profundice en los temas de investigación de 'A robust Birnbaum–Saunders regression model based on asymmetric heavy-tailed distributions'. En conjunto forman una huella única.

Citar esto