A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring

H. Alatrista-Salas, J. Azé, S. Bringay, F. Cernesson, N. Selmaoui-Folcher, M. Teisseire

Producción científica: Contribución a una revistaArtículo de revista revisión exhaustiva

14 Citas (Scopus)

Resumen

Rapid population growth and human activity (such as agriculture, industry, transports,...) development have increased vulnerability risk for water resources. Due to the complexity of natural processes and the numerous interactions between hydro-systems and human pressures, water quality is difficult to be quantified. In this context, we present a knowledge discovery process applied to hydrological data. To achieve this objective, we combine successive methods to extract knowledge on data collected at stations located along several rivers. Firstly, data is pre-processed in order to obtain different spatial proximities. Later, we apply a standard algorithm to extract sequential patterns. Finally we propose a combination of two techniques (1) to filter patterns based on interest measure, and; (2) to group and present them graphically, to help the experts. Such elements can be used to assess spatialized indicators to assist the interpretation of ecological and river monitoring pressure data.
Idioma originalInglés
Páginas (desde-hasta)127-139
Número de páginas13
PublicaciónEcological Informatics
Volumen26
N.ºP2
DOI
EstadoPublicada - 1 mar. 2015
Publicado de forma externa

Palabras clave

  • Data mining
  • Sequential patterns
  • Spatiotemporal databases
  • Water management

Huella

Profundice en los temas de investigación de 'A knowledge discovery process for spatiotemporal data: Application to river water quality monitoring'. En conjunto forman una huella única.

Citar esto