Prediction of solar radiation using neural networks forecasting

Álvaro Talavera, Marcos Ponce-Jara, Carlos Velásquez, David Tonato Peralta

Research output: Contribution to journalArticle in a journalpeer-review


Solar radiation and wind data play an important role in renewable energy projects to produce electricity. In Ecuador, these data are not always available for locations of interest due to absences of meteorological stations. In the scope of this paper, a low-cost automatic meteorological station prototype based on Raspberry technology was developed to measure the aforementioned variables. The objective of this paper is twofold: a) to present a proposal for the design of a low-cost automatic weather station using the Raspberry Pi microcomputer, showing the feasibility of this technology as an alternative for the construction of automatic meteorological station and; b) to use Forecasting with neural networks to predict solar radiation in Manta, Ecuador, based on the historical data collected: solar radiation, wind speed and wind direction. We proved that both technology feasibility and Machine learning has a high potential as a tool to use in this field of study.
Original languageEnglish
Pages (from-to)181-194
Number of pages14
JournalCommunications in Computer and Information Science
StatePublished - 12 May 2021
EventInternational Conference on Information Management and Big Data - Lima, Peru
Duration: 1 Oct 20203 Oct 2020
Conference number: 7

Bibliographical note

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.

Publisher Copyright:
© 2021, Springer Nature Switzerland AG.


  • Neural networks
  • Solar radiation
  • Weather station
  • Wind speed


Dive into the research topics of 'Prediction of solar radiation using neural networks forecasting'. Together they form a unique fingerprint.

Cite this