Abstract
The adoption of electronic health records has increased the volume of clinical data, which has opened an opportunity for healthcare research. There are several biomedical annotation systems that have been used to facilitate the analysis of clinical data. However, there is a lack of clinical annotation comparisons to select the most suitable tool for a specific clinical task. In this work, we used clinical notes from the MIMIC-III database and evaluated three annotation systems to identify four types of entities: (1) procedure, (2) disorder, (3) drug, and (4) anatomy. Our preliminary results demonstrate that BioPortal performs well when extracting disorder and drug. This can provide clinical researchers with real-clinical insights into patient's health patterns and it may allow to create a first version of an annotated dataset.
Original language | English |
---|---|
Title of host publication | Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 |
Editors | Illhoi Yoo, Jinbo Bi, Xiaohua Tony Hu |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 1548-1550 |
Number of pages | 3 |
ISBN (Electronic) | 9781728118673 |
DOIs | |
State | Published - Nov 2019 |
Externally published | Yes |
Event | 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 - San Diego, United States Duration: 18 Nov 2019 → 21 Nov 2019 |
Publication series
Name | Proceedings - 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 |
---|
Conference
Conference | 2019 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2019 |
---|---|
Country/Territory | United States |
City | San Diego |
Period | 18/11/19 → 21/11/19 |
Bibliographical note
Publisher Copyright:© 2019 IEEE.
Keywords
- clinical research
- electronic health records
- named-entity recognition
- natural language processing